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I.  Phys. A. Math. Gen. 28 (1995) L369-L374., printed in the UK 

LETTER TO THE EDITOR 

, Multivariable continuous Hahn and Wilson polynomials 
related to integrable difference systems 

~~ J F van Diejent 
Department of Mathematical Scieinw, University of Tokyo, Hongo 7-3-1, Bunkyo-ku. 
Tokyo 113. Japan 

Received 10 May 1995 

Abstract Multivariable generalizations of the continuous Hahn and Wdsan polynomials are 
intmduced as eigenfunctions of rational Ruijsenaars-type difference systems with an external 
field. 

In a by now famous pioneering paper, Calogero studied (essentially) the spectrum and 
eigenfunctions of a quantum system of N one-dimensional particles placed in a harmonic 
well and interacting by means of an inverse square pair potential [I]. The spectrum of 
the system, which is discrete due to the harmonic confinement, turns out to be remarkably 
simple: it coincides with that of non-inferacting particles in a harmonic well, up to an 
overall shift of the energy. The structure of the corresponding eigenfunctions is also quite 
simple: they are the product of a factorized (Jastrow-type) ground-state wavefunction and 
certain symmetric polynomials. Recently, a rather explicit construction of these polynomials 
was given in terms of raising and lowering operators [2]. 

Some time after its introduction, Olshanetsky and Perelomov realized that the Calogero 
system can be naturally generalized within a Lie-theoretic setting, such that for each 
(normalized) root system there exists an associated Calogero-type quantum model [3]. From 
this viewpoint, the original model Eorresponds to the root system A N - I .  If one restricts 
attention to classical (i.e. non-exceptional) normalized root systems, then the Hamiltonians 
of the corresponding Calogero models split into two types. 

v p e  A root system AN-1 

Type B: root systems BN and DN (go = 0) 

+ (go(g0 - I ) q 2  + 4x:) (2 )  
l < j < N  

(8, = a / a x j ) .  For the very special case N = 1, (the polynomial parts of) the eigenfunctions 
of these Hamiltonians amount to Hemite polynomials (type A) and Laguerre polynomials 
(type B). If the external harmonic field is switched off, i.e. for 00 = 0, then the spectrum 
of the Hamiltonian becomes continuous (assuming g, go > 0), and the eigenfunctions are 
no longer polynomials but give~rise to multivariable families of Bessel-type functions [41. 

t Supported by the Japan Society for the Promotion of Science (JSPS) 
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Several years ago, Ruijsenaars introduced a relativistic generalization of the type A 
model without an external field [51. The Hamiltonian of this relativistic system is given 
by an analytic difference operator that becomes Hc~,A (1) (with WO = 0) after sending the 
step size to zero. (This transition may be interpreted as the non-relativistic limit.) More 
recently we found similar difference versions for the type A model with WO # 0 and for 
the type B model [6]. In this letter we study the eigenfunctions of these two difference 
models. For the type A difference version this will lead to a multivariable generalization 
of the continuous Hahn polynomials [7,8], whereas for type B we will find a multivariable 
version of the Wilson polynomials [9,101. By sending the step size to zero, we recover the 
spectrum and eigenfunctions of the Calogero Hamiltonians H c ~ , A  (1) and Hc~.B  (2). 

l)pe A: continuous Hahn case. The Hamiltonian of the (rational) difference Ruijsenms 
system with external field is given by the second-order difference operator [6] 

where (e*iajY)(xl,. . . , , XN) = Y(XI,.  . . .xj-1, xj f i, xj+l,  . . . , X H )  and 

u(z) = 1 + g/(iz) 

We will assume 

w+(z) = (U+ + iz)(b+ + iz) w-(z) = (U- - iz)(b- - iz). 
(4) 

(5) 
- - g 2 0  a-=a+ b-=b+ Re(a+,a-,b+,b-) 2 0  

which ensures, in particular, that the Hamiltonian is formally self-adjoint. In order to solve 
the eigenvalue problem for H A  (3)-(5) in the Hilbert space of square integrable permutation- 
invariant functions, we introduce the weight function 

Condition (5) implies that AA is positive. Since the transformed operato1 

'h!A = An1l2HAAft/' 

clearly annihilates constant functions, it follows that AX/Z is an eigenfunction of HA with 
eigenvalue zero. This eigenfunction corresponds to the ground state. The excited states are 
a product of Aft/' and symmetric polynomials associated with the weight function AA (6). 

(8) 

(9) 

Specifically, one has 

HA% = EA(TZ.)% 

 EA(^) = 

n E zN, nl 2 n2 2 . . l l N  2 0 
with eigenvalues reading 

nj(nj + a+ + a_ + b+ + b- - 1 + 2 ( N  - j ) g )  
l< jCN 
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and eigenfunctions of the form 

WZ) = A ~ ’ P , . A ( ~ )  (10) 

AI  pn.A(z) = mn(z )  + cn,n,mn,(z) cn,n’ E c 
where P ~ , A ( x )  denotes the symmetric polynomial determined by the conditions 

n’<n 

P ~ , A ( Z ) ~ A A  dx l .  . . dxN = 0 if n’ < n. 
A2 L N  

Here, the functions m,(x) denote the basis of monomial symmetric functions 

m n ( x ) =  x l l  ... xnb N nEzN, n1 > n z >  . . . > ~ N > o  

and the partial order of the basis elements is defined by 

(11) 
d 

“ESW(*) 

n’ < n iff C n ; <  c nj f o r k = l ,  ..., N (12) 
I<j<k l<jG 

(n‘ -= n if n’ < n and n’ # n). 
The proof of the above statement amounts to showing that the polynomials pn.~(z) are 

eigenfunctions of the transformed operator ‘HA (7). This follows from the fact that ‘HA is 
both triangular with respect to the monomial basis 

and symmetric with respect to the L2 inner product with weight function AA (6). The 
eigenvalues  EA(^) (9) are obtained by computing the diagonal matrix elements [‘HA]n.n; i.e. 
the leading coefficients in expansion (13) of (‘HAm,)(x) in monomial symmetric functions 
mn@). 

By definition, the polynomial pn,*(z) amounts to mn(x) minus its orthogonal projection 
in L2(RN, AA dxl . . . d x ~ )  onto span{m,,},,,,. For N = 1 these polynomials reduce to 
(monic) continuous Hahn polynomials [7 ,8] .  

l j p e  B: Wilson case. Multivariable Wilson polynomials are obtained in much the same 
manner as their continuous Hahn counterparts, except that in addition to being permutation 
symmetric now everything also becomes even in x j ,  j = 1 ,  . . . , N .  The Hamiltonian of the 
type B version of the difference Ruijsenms system reads [6] 

with 

v*j = W ( & X j )  n u ( & x j  + X k ) U ( * X j  - x k )  
k # j  

(16) 
(a + iz)(b + iz)(c + iz)(d + iz) 

Ziz(2iz + 1) u(z) = 1 + g/(iz) W(Z) = 
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with 

r ( a  + ixj)r(b + irj)r(c + ixj)r(d + ixj) .nl l<j<N r(2ixj) 

and pn,~(zZ) is the even symmetric polynomial determined by the conditions 

B1 F n . B ( z 2 )  = mn(& + Cn.n,mn,(zz) Cn.n' E C 
n'cn 

B2 k N  
p n , B ( z Z ) & @ J ~ B  . . ~ . x N  = o if k' < n. 

Here the functions mn(zZ) stand for the basis of even symmetric monomials 

and the partial order of the basis elements is the same as before (see (12)). 

operator 
The polynomials p n . ~ ( x 2 )  are, of course, again eigenfunctions of the transformed 

+ W ( - X j )  n V ( - X j  +Xk)u(-*j -Xk)(eia' - 1) . (22) 
X i 1  1 

For N = 1 they reduce to (monic) Wilson polynomials 19,101 
Transition to the Calogero system. If we substitute xj --f ,T'xj (so aj --f p a j )  and 

a+, a- + (B2o0)-', b+, b- --f (p20b)-'  in our type A difference Hamiltonian and multiply 
by B2w0ob, then we arrive at a Hamiltonian of the form HA (3) with exp(rtiaj) replaced 
by exp(&$aj) and 

u(z) = I + pg/(iz) = @-'(I * iBwoz)(l* ipwbz). (23) 
By sending the step size fi to zero the difference operator becomes a differential operator 
of the form H c ~ , A  - EO.A. where H c ~ . A  is given by (1) with WO replaced by 00 +ab, and 
EO,A is a constant with value 

E0.A (00 + ob)N(1 + ( N  - 1)g). (24) 
In this limit the weight function AA (6) becomes (after dividing by a divergent numerical 
factor) 

Thus, we recover the spectrum and eigenfunctions of the type A Calogero system: 

Hc~I,A% = E m , A ( n ) %  T2 E ZN, nI 2 nz 2 ". > E N  2 0 (26) 



Letter to the Editor L373 

with 

EcA,A(~) = EO,A + 2(% + Q C nj 

where p n , c d , ~ ( z )  denotes the symmetric polynomial determined by conditions A1 and A2, 
and with AA (6) replaced by A ~ . A  (25). 

For type B, the transition .to the Calogero system is very similar. The substitution 
xj --f p-Ixj (aj + pa,), a 4 go. b + g;, + 1/2, c +. (~ZOA,)-~, d -+ (pot 0 )  -1 , and  
H B  --f 4 p z W o W b f f ~  leads to a Hamiltonian of the form HB (14) with exp(+-iaj) replaced 
by exp(;tipa,) and 

(27) 
112 

WX) = ~ ~ ~ , ~ p ~ , c a l . ~ ( a ~ )  
I S j < N  

v ( z )  = 1 + Bg/(iz) 

For @ + 0 one now obtains a differential operator of the form H c ~ . B  - EO,B, where Hcd.8 
is given by (2) with go replaced by go + gb and WO by WO +cob, and the constant EO,B reads 

(2% E0.B = (00 + W b ) N ( 1  + 2(N - 1)g + 2(gO 

In the limit (and after dividing by a divergent numerical factor) the type B weight function 
becomes 

A c d , ~  = n ~ I X j  +XklgiXj  -Xklg n ~ X j ~ Z “ O + g ” e - ‘ ~ ’ ~ ~ ’ x ~  (30) 
I<j#k<N 1 6 j G N  

and the eigenfunctions become 

ff&i.8Yn = Ec~.B(Tz)Y% TZ E ZN, nl 2 nz > ... 2 nN 2 0 (31) 
with 

E W B ( ~ )  = e 0 . B  + 4(00 + nj w+) = A ~ ~ . ~ P ~ . c ~ I . B ( ~  

where ~ , , C ~ , B ( X ’ )  denotes the even symmetric polynomial determined by conditions B1 
and B2, and with AB (20) replaced by A&~.B (30). 

Let us conclude by remarking that both our multivariable continuous Hahn and Wilson 
polynomials are limiting cases of ‘a multivariable version of the Askey-Wilson polynomials 
1111 introduced by Koomwinder 1121 as a generalization of Macdouald’s polynomials 
associated with the root system BCN [13,14]. Koornwinder’s multivariable Askey-Wilson 
polynomials are joint eigenfunctions of an algebra of commuting difference operators with 
trigonometric coefficients [15]. This algebra constitutes a complete set of quantum integrals 
for a difference version of the trigonometric BCN-type Calogerdutherland system. Similar 
algebras consisting of commuting difference operators that are simultaneously diagonalized 
by our multivariable continuous Habn and Wilson polynomials can be obtained as rational 
degenerations. The difference Hamiltonians considered in this letter ate the simplest (i.e. 
lowest order) non-trivial operators in these algebras. 
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